ChatGPT 元年:野心,战略,以及绕不开的困难|TECH TUESDAY
行业技术水平快速提升后,一些原本计划与 OpenAI 合作的公司转向开源。Salesforce 曾计划以 GPT-4 改造自己庞大的企业服务业务,现在已经开始自己研发大模型或使用开源大模型替代 GPT-4,以降低成本。它的一位高级副总裁说,“随着人工智能产品达到更大的规模,我们开始关注成本效益,成本只会变得更加重要。”
中国想用大模型改造业务的公司类似,他们虽然研发出了千亿参数的大模型,但在具体应用中,大多使用参数只有数十亿参数或者百亿参数的模型,也因此影响了最终效果。
OpenAI 等公司也在持续调整大模型算法降低大模型的运行成本,但最终绕不开的是英伟达的 “税”。根据咨询机构 The Information Network 总裁罗伯特·卡斯特拉诺(Robert Castellano)等人的报告,英伟达以不到 4000 美元的成本向台积电、SK 海力士采购关键元件、造出 H100 芯片,然后以 40000 美元的单价售出,毛利率超过 90%。
现在整个大模型行业大致找到了两个解决办法。一种是科技巨头自己下场研发芯片,比如 Google、亚马逊、微软,甚至 OpenAI 都在考虑针对 AI 运算自研芯片。
另一种则是让消费者买更适合大模型计算的手机和电脑,分担算力成本。高通、苹果近期发布新款笔记本电脑芯片时,都会强调可以运行百亿参数的大模型,并创造了一个新的名词:AI PC。
过去一年,从 AI 热里收益最多的不是 OpenAI
根据麦肯锡今年 4 月发起的调研报告,40% 的公司因为生成式人工智能出现,决定加大对人工智能投资。高盛在 8 月预测,全球的企业今年朝人工智能领域投资 1102 亿美元,比去年增长 20%。
据媒体报道,靠着 ChatGPT,OpenAI 的年收入达到了 13 亿美元,是它去年收入的 43 倍,超过了商汤。OpenAI 第一次证明,不用做短视频鼓励娱乐至死,也不用像商汤那样做安防 “集成商”,一家公司单凭先进的人工智能技术也可以获得可观收入。
同时,OpenAI 的估值也从去年 10 月的不到 200 亿美元增长到了近 900 亿美元,成为全球第三大独角兽,仅次于字节跳动和造火箭的 SpaceX。
不过 OpenAI 不是最大的受益者。资本市场现在更相信科技巨头在 AI 里的潜力。
它们掌握着人工智能领域必不可少的数据、算力、使用场景,以及客户群体。相比着 OpenAI 领先的大模型技术,这些基础设施一样的资源,要比技术本身更稀缺。
“护城河在于客户,而不是数据。” 红杉资本在今年 9 月发布的生成式人工智能报告中写道,他们之前认为,最好的生成式人工智能公司可以凭借数据建立领先优势,但后来发现并不稳固:“生成式人工智能应用产生的数据,并没有创造出不可逾越的护城河,而工作流程、用户网络,正在创造更持久的竞争优势。”
自去年 ChatGPT 发布到现在,标普 500 只涨了 10%,微软的股价增长近 50%,市值增加了 7400 多亿美元。它给 OpenAI 投资 100 亿美元,已经约等于不用花钱。
一开始被认为可能遭受巨大冲击的 Google,市值增加了 3200 多亿美元;靠着开源大模型追上来的 Meta,市值增加了近 5000 亿美元。
当然也少不了英伟达,凭借着对 GPU 垄断的市场地位,过去一年其市值增加了 7100 多亿美元,成为了芯片行业第一家市值万亿美元的公司。一年前,它还在为显卡滞销发愁,不得不降价促销。
中国大模型行业声量最大的百度、科大讯飞,一年来市值分别增加了 27 亿美元和 45 亿美元。而作为上一代人工智能公司的代表,商汤虽然也发布了大模型,但股价这一年下跌超 16%。
在人工智能投资方面,中国与美国是全球投入最多的两个国家。根据斯坦福大学统计的数据,在 2019 年之前,中美之间人工智能投资差别不算太大,而到了 2020 年、2021 年,美国对人工智能领域投资已经从原本超中国 70%,变成了是中国的 2.7 倍、3.1 倍。
这两年正值 OpenAI 发布 GPT-3,证明了更大的模型可以有更好效果,并坚定追加投入,去研发 ChatGPT。不过在 2022 年,全球对人工智能的信心都减少了,整体投资额相比上一年明显减少。
过去一年,随着 ChatGPT 发布,全球加大人工智能领域投入,中美在人工智能领域投资的差距再次缩小,但能多大程度上弥合技术差距,还是一个未知数。
对大模型监管的不同态度,对话语权的争夺
2021 年,欧盟已经提出监管人工智能的框架,但没有推进下去。毕竟那时的人工智能还不算过时的浪潮。
ChatGPT 发布后,全世界的人工智能立法都加速了。欧盟的主要立法机构欧洲议会在 6 月投票通过了提出两年的《人工智能法案》(A.I. Act)草案,严格限定了人工智能技术的使用场景和范围,要求 ChatGPT 等生成式人工智能,需要披露哪些内容是人工智能生成的,需要设计模型防止生成有害内容,需要披露训练模型时用了哪些有版权的数据等。
中国在今年 4 月发布《生成式人工智能服务管理办法(征求意见稿)》,8 月正式实施,要求每一个在中国境内提供服务的大模型,都要报告训练数据,经过有关部门备案和安全评估后,才能公开提供服务。目前有 10 多家大模型公司通过备案。
上个月,美国总统拜登(Joe Biden)签署通过关于人工智能的监管法令。根据白宫发布的情况说明,美国把监管重心放在了下一代大模型上,要求大型 AI 公司开发对 “国家安全、国家经济安全等构成严重风险” 的大模型时要通知政府。
颠覆性的新技术与监管政策常常对立,逐渐在冲突中找到平衡。互联网诞生之初,加密传输数据曾被认为会保护恐怖主义,连浏览器在不同国家都要用不同级别的加密技术。网约车在全球各地都经历过违规时期,加密货币至今还在灰色地带。
人工智能是少数主动拥抱监管的新兴行业。ChatGPT 发布半年后,阿尔特曼就坐到了美国参议院听证会的证人席上,呼吁议员们监管人工智能:“如果这项技术出了问题,后果可能会非常严重。” 现场的一名议员听到阿尔特曼的发言后说:“很少有公司在国会面前说,请监管我们。”
5 月底,非营利组织 Center for AI Safety 发布了一篇公开信,呼吁政府机构应该把 “减轻人工智能带来的灭绝风险” 当作优先事项,像对待流行病和核战争那样慎重。OpenAI 的高管们、Google DeepMind 的负责人戴米斯·哈萨比斯(Demis Hassabis)、Anthropic 的 CEO 达里奥·阿莫迪(Dario Amodei)都在名单上。他们罗列了一些大模型可能用于作恶的证据,比如助长虚假信息传播等、可以帮助制造毒药。
反对 AI 强监管的声音同样强大,最主要的代表是 Meta 人工智能项目负责人杨立昆(Yann LeCun)、风投 a16z 合伙人马克·安德森(Marc Andreessen)、斯坦福大学计算机系教授吴恩达等人。吴恩达近期与杨立昆等人共同签署了一封呼吁人工智能开放的公开信。他们和开源运动的积极支持者们都相信,当技术向所有人彻底开放,就能化解危险。
安德森在一篇文章中称,寻求严格监管的 CEO 与从禁酒令中获益的私酒贩子没什么区别,“形成监管壁垒,建立政府支持的人工智能供应商联盟,他们会免受创业公司和开源竞争的影响,就能赚更多钱”。
严格的监管后,新进入者、小公司往往难以负担合规成本。银行、能源、烟草等行业转向强监管后都没什么新公司。原本领先的公司因此受益。
在今年 5 月的美国国会听证会上,一位参议员质疑:“少数几家公司控制、影响着所有人的生活”,会不会有危险?
阿尔特曼承认,最终只有少数公司能制造强大的模型,这有利有弊,因为 “你们需要盯着的公司也少了”。